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Abstract 

Complex behaviour, from the molecular to the ecological, can be 
the result or parallel local interactions of many simpler 
individual agents.  The swarm, which is a collection of simple 
locally interacting organisms with global adaptive behaviour, is 
an emergent behaviour that is able to be modelled with accuracy 
within a computer simulation. 

 

Swarm or Distributed intelligence can be defined as the exhibition of collective 

intelligence by groups of simple agents. The Swarm Intelligence approach to Distributed 

Artificial Intelligence (DAI) argues an alternative approach to problem solving exists and 

operates at a different level than the problem solving processes that are traditionally used.  The 

basic premise of the Swarm Intelligence premise is presented in the computerised modelling of 

“dumb” artificial agents modelled after biological entities that are not programmed with 

intentional goals individually and yet exhibit problem solving abilities as a collective behaviour.  

Two core concepts of Swarm intelligences are stigmergy1 and allelomimesis; stigmergy meaning 

communication through the environment, and allelomimesis meaning an individual’s reaction it’s 

neighbour.  Stigmergy is a common term within DAI as it describes the computation that needs to 

occur ever time an individual responds to and therefore modifies its environment, causing all rule 

sets for all neighbouring individuals to be recomputed.   

                                                 
1 Kassabalidis, 1 
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Swarm behaviour is characterised by collective phenomena such as flocks of birds, 

schools of fish, swarms of bees and schools of ants exhibit identifiable group behaviour whose 

complex migration, hunting, and gathering behaviour appears to be wholly integrated and is seen 

as a single coherent entity.  Computer simulations of individual members of such collective 

phenomena has proven to be a useful heuristic in analysing the group as a whole, however, this 

understanding appears to be contingent upon the modelling of the very large number of 

interactions that occur between the individuals.  Using these tools, it has been demonstrated that 

group leadership, hierarchical control, and global information is not necessary for collective 

behaviour.2  It is critical to realise that this “collective” behaviour is not limited to just spatial 

motion, but the actual behaviour of the individuals within the group. 

Simple rule sets can be applied to many different types of DI (Distributed Intelligence) in 

computer simulations and illustrate simple actions for collective groups.  Models of such 

behaviour range from abstract cellular automata to more physically realistic computer simulations.  

An example of this is a two rule set for a termite to build a dome.  The existing condition is that 

each termite will take some dirt into its mouth to moisten it, and then follow two rules: Move in 

the direction of the strongest pheromone concentration, deposit what you are carrying where the 

smell is strongest.3  Such models of behaviour for collective groups assume that each individual is 

moving at a constant speed and is moving in a relative proximity to its neighbours.  This kind of 

collective behaviour exhibits allelomimesis, in which an individual's actions are determined by its 

neighbours which is often one of the main influences on a decentralized system. 

The observation of DI in animals assists in understanding the evolution of cooperative 

behaviour and understanding emergent phenomena of many different types.  For example, fish 

schools appear to move as one entity, moving together as an identifiable single organism. It is 

now understood that there is no set of group-level rules for the exhibited movement, or even a set 
                                                 
2 Couzin, 1. 
3 Kennedy, 103. 
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of rules for collective behaviour for the individual.  There is no leader or hierarchy that steers and 

controls the movement—instead it is a mechanism by which individuals interact to the behaviours 

of their immediate neighbours and as a result of such local interactions, the collective group-level 

pattern of activity emerges spontaneously; an example of biological self-organisation.   

 Collective phenomena is not to be 

misconstrued as a term or a technology 

specific to Artificial Intelligence or 

biological systems; it exhibits emergent 

behaviour wherein simple interactions of 

autonomous agents, with simple primitives, 

give rise to a complex behaviour that has 

not been specified explicitly.4   Distributed 

Intelligence systems use resilient, 

decentralised emergent techniques based on 

the systems of social insects.  A social insect 

colony has three main attributes that define 

its behaviour as DI: 

• Global order from local interactions: 
The system has a correlation between the elements of the system and is not controlled by a 
non-local (external) force.   

• Distributed Control: Corollary to the first characteristic; local interactions emerge from the 
distributed control among the system elements. 

• Robustness: The system is resistant to perturbations and has a strong capacity to restore itself 
after damage. 

The main problem in designing DAI after biological distributed systems lies in creating a 

system with emergent properties; how can individual behaviour and interactions be defined in 

order to produce desirable emergent patterns.  In a study of two similar types of organisms, desert 

                                                 
4 Kassabalidis, 1 
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and army ants, it is possible to understand the possible connection between the number of 

individuals and the subsequent effect on behaviour. Desert ants generally evolve into small 

colonies of one thousand individuals, and army ants into large colonies of one million 

individuals.5  In small colonies like the desert ants, the individuals exhibit complex behaviour, 

with demands for specialised behaviours.  Large colonies like army ants, however, follow very 

few rules of a very simple behaviour.  However, both groups have nearly the same behaviour in 

such simple tasks as path planning: 

1. Avoid obstacles 
2. Wander randomly (with a weighting 

towards pheromone trails). 
3. If holding food, drop a pheromone trail.  
4. If find food (if not carrying) and pick it 

up. 
5. If find nest, drop food. 

 
 

The complexity dynamic, however, reflects an individual’s threshold reinforcement 

dynamic, wherein the more a specialist within a colony performs the same task, the less 

possibility that it will respond to a new task.  While new specialists can be generated in response 

to perturbations, they take longer as each individual waits for another individual to rise to the task.  

The paradigms within emergent behaviours of self-organisation raise questions about what 

environmental and local conditions must be in place for a leader or specialist to emerge.  In some 

cases the difference between a non-leader and a leader can be threshold responses to 

environmental external stimuli such  as air or water currents, light, and temperature.  Groups 

which effectively utilise leaders such as flocks of geese or some schools of fish follow three 

different rules: 

1. Leader issues orders- all turn now. 

2.  Lead by example—I turn, you turn.  

3. The most reasonable action.  

                                                 
5 McShea, 220 
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There are problems with the leader-led paradigm; within flocks, a perturbation of flock 

bifurcations and coalescing raises problems of leadership.  Also, there are certain costs within 

leading, and how the fitness of the group best served, and by which leader.   Leaders become a 

form of specialisation, and pay certain costs in effort.  There are also difficulties of 

communication within a flock that relies on visual contact for cohesion.  Perturbations occur 

within the system which leads to challenges of leadership, and waiting for threshold values to be 

exceeded.  In leading, a “front” is created when leaders are decided upon.  However, as illustrated 

below in figure 1, when there is a local environment change that seems to inspire a reaction, 

allelomimesis takes over and causes direction or some other kind of pattern change in the group.  

During a change in direction, the leaders are no longer at the “front,” and there is a need for new 

leaders to emerge, and another threshold waiting period begins. 

 
Figure 1.  Leadership in a direction change. 

 

Conversely, the advantages to flocking are many, which why it is such a successful 

collective behaviour.  Predators are less likely to be able to track individuals within a group, 

which relates to the idea that individuals in a herd are acting selfishly, and use the herd as a way 

of escaping the notice of predators through confusion.6 Animals in a flock also have an advantage 

in their ability to concentrate prey by working as terms.  While flying, birds in a flock can 

                                                 
6 Hamilton, 295 
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conserve energy by practising 

slipstreaming.  Individuals in a flock 

are also at a close proximity, 

facilitating the need to find a mate.  

Craig Reynolds, a computer 

programmer, found various ways of 

applying rule sets to biological 

systems and developed a simple flock 

modelling system that was able to 

realistically portray bird-like elements 

in a distributed system, which he 

dubbed “boids”.  He addressed the problem of how allelomimesis works in a flock given only 

very simple rule sets.  However, in order to realistically animate the flock, each flight path for 

each individual had to be constantly recalculated upon the changes that earlier recalculations had 

imposed upon the group as a whole. 

There is also a swarming behaviour which is the antithesis of flocking, repulsion.  This is 

mainly used in biological systems for tasks that require a task in a large geographic region.  A lot 

of these methods are being utilised in robots for similar tasks.  Ants use repulsion for tasks such 

as Foraging, and exploration for new sites.  Robots that use similar techniques are being designed 

for environment exploration in order to perform rescue, landmine and trash search and collection.  

 

 

 

 



Wood 7 

 
Figure 2. Couzin's representation of an individual 

 
 Within Couzin’s ground breaking paper in 2002 which presented a model of the 

collective behaviour of animal groups, he specifies individual level rules within the construct 

above in Figure 2.  This paper illustrated four types of self-emergent behaviour of group 

formation within a three dimensional space, as well as presenting an argument for collective 

memory within groups.  In the figure above, the individual is centred at the green arrow facing 

toward x and follows five basic rules: 

1. Maintain minimum distance and position your centre so that there are no others within 

your ZOR.   

2. If any other individuals enter your ZOR, move away. 

3. If there are no individuals within your ZOR, respond to any others in the ZOO and ZOA 

except those in the blind spot. 

4. Align yourself with neighbours in ZOO. 

5. Orient towards neighbours in ZOA. 
 

As Couzin changed the area of the behavioural zones of repulsion, orientation and attraction, 

four collective behaviours of group formation emerged: swarm, torus, dynamic parallel group, 

and the highly parallel group.   
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Swarms: 

 The swarm group is an aggregate with 

cohesion, and a low level of parallel alignment 

among the individuals, and a low angular 

momentum.  This 

type emerges when 

individuals perform ZOA 

and ZOO behaviours with little to no 

parallel orientation.  This behaviour is mainly exhibited in insects 

such as locusts, mosquitoes and midges, and can also be seen 

within fish 

schools. 

 

 
 
 

Torus: 

 The individuals within this group 

continually rotate around an empty core in a behaviour called 

“milling”.  The direction of the rotation is random, and the parallel 

alignment within the group is low, but the angular 

momentum is high.  This type occurs when the ZOO 

is small and the ZOA is large.  While this may seem 

to be uncharacteristic of real animal movement 

within groups, it is a natural formation exhibited by 

barracuda, jack and tuna.   

 

Figure 5.  Torus Group 

Figure 4.  midges in a 
swarm 

Figure 3.  Swam Group 
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Dynamic parallel group: 

 This group has a high level of parallel 

alignment among individuals, but a low angular 

momentum.  This group type is much more 

mobile than the swarm or torus, and occurs at 

intermediate values of the ZOO with intermediate 

or high values of ZOA.  This type exhibits many of 

the same characteristics 

associated with aggregations such as flocks of birds 

and schools of fish.  The individuals are polarised and 

move as a coherent group, however, the individuals 

can move within the group, allowing fluctuations in 

group density and shape. 

 

Highly Parallel Group: 

 As the ZOO increases, this type self-

organises into a highly aligned arrangement with 

very high parallel orientation with rectilinear 

movement.  

This type is much 

more static than 

the other three in terms of the individual’s spatial 

Figure 10. Highly Parallel 
Group 

Figure 8.  Dynamic Parallel Group 

Figure 7.  Midges in a Dynamic 
Parallel Group 

Figure 9.  School of fish in a Highly 
Parallel Group 
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orientation within the group, making the fluctuations in density and the shape of the form very 

consistent. 

 Using these tools in order to better understand how swarms function in biology, it is 

therefore possible to model these same individual rules of the biological systems in order to better 

understand how swarms develop, and how slight 

changes in an individual’s rule sets in response 

to allelomimesis can reform a swarm into 

a new type in order to best deal 

with the current situation.  The four 

types of groups, 

a. swarm 
b. torus 
c. dynamic parallel 
d. highly parallel 
 
Each has a unique signature of movement, form and 

orientation. The polarisation graph shows the amount of parallel alignment (P group) between 

neighbouring individuals locally interacting in any one group type.  The two axis are measured by 

the width of repulsion in ZOO ( Or∆ ) and attraction in ZOA ( ar∆ ).  The most polarised group is 

group d., the aptly named “highly parallel group” and the least being the swarm.   

The M group of motion shows the amount of 

angular momentum that one group has, 

showing the Torus group to be 

within a very small criticality range 

of Or∆  and ar∆ , showing the 

importance of movement to turning in 

the characteristic milling fashion. 

Figure 11.  Polarisation graph 

Figure 12.  
Angular Movement 
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 The use of collective behaviour in Artificial Intelligence and robotics has been 

traditionally centralised with globally defined parameters.  This is because of a belief that in order 

to achieve global level “intelligence”, the intelligence must be engineered globally.  As discussed 

earlier in regard to the Boids, the exponential state space in computing the stigmergy of each 

individual agent makes this kind of global intelligence prohibitive, as each state change needs to 

be modelled and fed back to each individual.   

One thing that might be learned in understanding biological systems in terms of their 

application to Distributed AI is the notion that a few simple rules have the ability to generate the 

complexity we see in the world.  As Kauffman insinuated, the origin of life could be simple under 

the right circumstances and self-organisation is likely a major driving force.   
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